biology
Biology Salamander 3 years ago 100%

The making of a photosynthetic animal

The making of a photosynthetic animal

Rumpho, M. E., Pelletreau, K. N., Moustafa, A., & Bhattacharya, D. (2011). The making of a photosynthetic animal. Journal of Experimental Biology, 214(2), 303-311.

Summary

Symbiotic animals containing green photobionts challenge the common perception that only plants are capable of capturing the sun’s rays and converting them into biological energy through photoautotrophic CO~2~ fixation (photosynthesis). ‘Solar-powered’ sacoglossan molluscs, or sea slugs, have taken this type of symbiotic association one step further by solely harboring the photosynthetic organelle, the plastid (=chloroplast). One such sea slug, Elysia chlorotica, lives as a ‘plant’ when provided with only light and air as a result of acquiring plastids during feeding on its algal prey Vaucheria litorea. The captured plastids (kleptoplasts) are retained intracellularly in cells lining the digestive diverticula of the sea slug, a phenomenon sometimes referred to as kleptoplasty. Photosynthesis by the plastids provides E. chlorotica with energy and fixed carbon for its entire lifespan of~10 months. The plastids are not transmitted vertically (i.e. are absent in eggs) and do not undergo division in the sea slug.However, de novo protein synthesis continues, including plastid- and nuclear-encoded plastid-targeted proteins, despite the apparent absence of algal nuclei. Here we discuss current data and provide hypotheses to explain how long-term photosynthetic activity is maintained by the kleptoplasts. This fascinating ‘green animal’ provides a unique model to study the evolution of photosynthesis in a multicellular heterotrophic organism.

6
11
Comments 11